
Ray Smith

Database Administrator

Portland General Electric

Objectives
 Philosophical alignment

 Context of quality

 Define quality in scripted solutions

 What are the common elements of good scripts?

 40 slides in 45 minutes

 Available online after the conference

Quality cabinets
 Look at the drawers

 Hardware

 Attractive, inviting, practical

 Prevent accidents (limited range)

 Technique

 Dovetail, staples, gum

 Expectations

 Good enough for what it is

 Something built to last

Quality
 Rule #1: SHELL SCRIPTS MUST WORK

 High-visibility tasks

 Migrations, deployments, and upgrades

 Unforgiving tasks

 Backups and monitoring

 Repetitive tasks

 Reporting and analysis

 Rule #2: SCRIPTS MUST KEEP WORKING

 Harmony and joy or . . .

Spiritual Guidance
 The Art of Unix Programming

 Eric S. Raymond

 Addison-Wesley

 Three decades of unwritten, hard-won software
engineering wisdom from 13 Unix pioneers

 Resident anthropologist and roving ambassador of the
open source movement

Quality, craftsmanship, harmony

 Dimensions of shell script quality

 Transparency

 Clear communication

 Scalability

Transparency
 Rule of Clarity

 Clarity is better than cleverness

 Rule of Simplicity

 Design for simplicity

 Add complexity only where you must

 Rule of Transparency

 Design for visibility, inspection, and debugging

Clear Explanations
 Be generous with internal documentation

 Particularly when being clever or ultra-efficient

 Avoid NVA interpretations

Find all instances of the string

find . –type f –exec fgrep –i “$mySTRING” \

/tmp/dummy {} \; 2>/dev/null

List the directory content, including links

ls –lasF

Visual Simplicity
 Be kind to yourself and others

 Layouts and formatting

USE WHITESPACE

Break up long lines with \

back-slash \

 It is okay to use the TAB key

Visual Flow
for thisHOST in `cat ${HOSTLIST}`; do

if [${#thisHOST} -gt 5]; then

echo "BIG: ${thisHOST} is ${#thisHOST} characters"

else

if [${#thisHOST} -lt 3]; then

echo "LITTLE: ${thisHOST} is ${#thisHOST} characters"

fi

fi

done

for thisHOST in `cat ${HOSTLIST}`; do

if [${#thisHOST} -gt 5]; then

echo "BIG: ${thisHOST} name is long"

else

if [${#thisHOST} -lt 3]; then

echo "LITTLE: ${thisHOST} name is short"

fi

fi

done

Visual Flow
for thisHOST in `cat ${HOSTLIST}`; do

if [${#thisHOST} -gt 5]; then

echo "BIG: ${thisHOST} is ${#thisHOST} characters"

else

if [${#thisHOST} -lt 3]; then

echo "LITTLE: ${thisHOST} is ${#thisHOST} characters"

fi

fi

done

for thisHOST in `cat ${HOSTLIST}`; do

if [${#thisHOST} -gt 5]; then

echo "BIG: ${thisHOST} name is long"

else

if [${#thisHOST} -lt 3]; then

echo "LITTLE: ${thisHOST} name is short"

fi

fi

done

Harmonious style and content

mySID=`zenity --list \

--text "Select the database instance" \

--column "SID" --column "Description" \

"NICKEL" "Five Cent Database" \

"URANIUM" "Not-For-Export Database" \

"CUSTOM" "User defined instance" `

This works:

So does this:

Which would you rather update?

mySID=`zenity --list --text "Select the database instance"
--column "SID" --column "Description" "NICKEL" "Five
Cent Database" "URANIUM" "Not-For-Export Database"
"CUSTOM" "User defined instance" `

Visual Consistency
 Make ${VARIABLES} stand out in your code

 Variable naming conventions
 ALL_CAPS for variable names

 CamelCase for function names

 thisVARIABLE or myVARIABLE for looped variables

 Be internally consistent
 Make a rule and follow it

Outstanding Variables
for thishost in `cat $hostlist`; do

if [$#thishost -gt 5]; then

longmessage

else

if [$#thishost -lt 3]; then

shortmessage

fi

fi

done

for thisHOST in `cat ${HOSTLIST}`; do

if [${#thisHOST} -gt 5]; then

LongMessage

else

if [${#thisHOST} -lt 3]; then

ShortMessage

fi

fi

done

Outstanding Variables
for thishost in `cat $hostlist`; do

if [$#thishost -gt 5]; then

longmessage

else

if [$#thishost -lt 3]; then

shortmessage

fi

fi

done

for thisHOST in `cat ${HOSTLIST}`; do

if [${#thisHOST} -gt 5]; then

LongMessage

else

if [${#thisHOST} -lt 3]; then

ShortMessage

fi

fi

done

The Penny Wise Quiz

a. Shorter variable names =

Less typing =

Less work

b. Obscure variable names =

Reduced transparency =

Poor quality

 Save your cycles for decyphering the logic
 Not the variable names

Transparency II

 Rule of Modularity

 Write simple parts connected by clean interfaces

 Rule of Robustness

 Robustness is the child of transparency and simplicity

Efficiency
 Use shell script functions

 Simple syntax

 Modularize all repeated code statements

function GiveDirectoryContent {

echo “\nThis directory contains:”

ls –lasF

}

> GiveDirectoryContent

Predictability
 Layout in sections

 Header with file name, purpose, command-line inputs

 Independent variables – edited w/ every installation

 “Nothing to change below this line”

 Dependent variables – never require edits

 Functions section

 Runtime block

 Think “On call” when laying out a script

Predictable Layout
#!/bin/bash

###

File : sample_script.sh

Input values : Database name (optional)

Purpose : Amaze others

###

===

Independent variables

===

export BASEDIR=/usr/lbin/orascripts

===

Dependent variables

Nothing to change below this line

===

LOGDIR=$BASEDIR/logs

WORKFILE=$LOGDIR/workfile.lst

Transparency Zen
 Rule of Diversity

 Distrust all claims of “one true way”

 Including your own

 Collaboration + humility = the cost of quality

 Design reviews expose opportunties

 Code reviews expose failure modes

Steal, adapt, improve, repeat

If it ain't broke . . .
 Don't ignore it

 Particularly for older scripts

 Tune it up

 Apply new techniques and tools

 Gzip for compress

 Verify old programs' assumptions

 Unreliable hardware

Transparency Wrap-up
Well-crafted shell scripts:

 Written with maintenance and on-call in mind

 Provide useful guidance and instructions

 Reflect visual simplicity and clear layout

Comments or questions

User Communication
 Rule of Silence

 Communicate clearly when necessary

 Rule of Repair

 When you must fail, fail noisily and as soon as possible

 Rule of Least Surprise

 In interface design, do the least surprising thing

 Do the most expected thing

Work with the user
 Verify scripted actions

 Keep the user informed

 Share status and decisions

echo “You asked to delete everything in /etc”

read -p "Is this correct? [Y|N]" myVal

case $myVal in . . .

echo “These files will be backed up:”

cat ${FILELIST}

Graciousness
 Handle errors with grace

 Explain the situation

 Lead the user to a solution

if [${#1} -eq 0];then

echo "The required value for database name"

echo "was not passed in the command line"

read -p "Enter the database name: " myVal

export thisSID=$myVal

fi

Signs of Life
 Same script should work in cron or interactive

 Test for tty (terminal id)

if tty –s

then

echo “Oh good, this is interactive”

echo “Hello $USER”

else

date +“Script $0 started %T” >> $LOGFILE

fi

Communicating Failure
 Cryptic feedback is neither welcome nor helpful

 Terminal output is free, use it if you need it

>

> FATAL ERROR: bckpinit_strt error 12

>

>

> File not found: bckpinit_strt.conf

>

> Corrective action required:

> Verify bckpinit_strt.conf exists at ABC

> and readable by user xyz

> Email notification has been sent

Artist and Psychologist
 Break the output into usable blocks

 Use \n and \t liberally

 If it makes it easier for user to understand

 Particularly important for interactive scripts

 Push the read statement into their attention

 Direct their eyes with breaks and groups

 Apply the same practices to log files and reports

Electronic Communication
 Be complete, be clear

 Which host

 Which process / job

 What happened (in prose)

 How to troubleshoot / resolve the problem

 Start communicating in the subject line

 Cryptic feedback in email is useless

servtest1: oradb arch_move completed WITH WARNINGS on 07/21/08

Total number of warnings = 1 .

Please review warning log,

/oradb_orabase/local/logs/oradb.arch_move.wlog

***** BOF /oradb_orabase/local/logs/oradb.arch_move.wlog *****

13:03:47 STG 3:Warning : NO Archives to move

***** EOF /oradb_orabase/local/logs/oradb.arch_move.wlog *****

Subject: servtest1: oradb arch_move completed WITH WARNINGS

Relevance

Communication Wrap-up
Well-crafted shell scripts:

 Work with the user

 Are generous with visual guidance and produce
attractive, useful log files and reports

 Provide clear and complete feedback

Comments or questions

Scalability
 Rule of Extensibility

 Design for the future

 It will be here before you know it

 Rule of Economy

 Use machine resources instead of people power

 Mindset

 Awareness

 Thoughtfulness

Scalability
 Scalability goal #1: Never customize a script

 Hard and fast rules

 Overuse variables

 Never hardcode

 Passwords

 Host or database names

 Paths

 Use command-line input, ‘read’, or parameter files

Stability and Predictability
 Consistency

 Use the same code across your entire enterprise

 Security

 Limit editing permissions

 'Them' and you, too

 Revision control

 Keep a gold copy out there

Make the Machine do the Work
 Create everything you need, every time

 Fix permissions too

 If you would manually check it . . .

export thisDIR=/usr/lbin/orascripts

if [! -d $thisDIR]; then

mkdir $thisDIR

fi

chmod 775 $thisDIR

Resourcefulness
 Single-point maintenance

 Host and database name lists

 Central repository

 Use existing files

 /etc/passwd, var/opt/oracle/oratab

 Use a function library

 'Sourced' whenever needed

 Edit once for every use

Function library contents
 Suggestions

 Report headings

 Common format inserts

 Email distribution lists or policies

 Email privacy notices

 Error handling

 Watch for opportunities

Scalability Wrap-up
Well-crafted shell scripts:

 Never require editing for a new host / installation

 Handle expected problems from the start

 Use existing resources whenever possible

Comments or questions

You are a Unix Programmer

“To do the Unix philosophy right, you have to be loyal to excellence.

You have to believe that software design is a craft worth all the

intelligence, creativity, and passion you can muster.”

-- Eric S. Raymond

Powells World of Books
 World’s largest independent bookstore

 Dedicated technical bookstore

 Short train / street car ride from Convention Center
 All Free Fare zone

 Any west-bound MAX

 Transfer to Portland Steetcar at 10th Avenue

 Half-mile north

www.powells.com

